Der Artikel ist weiterhin als ^^OTHERCONDITION^^ verfügbar.
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Convex Analysis and Nonlinear Optimization

Theory and Examples
 eBook
Sofort lieferbar | Lieferzeit:3-5 Tage I
ISBN-13:
9780387312569
Einband:
eBook
Seiten:
310
Autor:
Jonathan Borwein
Serie:
CMS Books in Mathematics
eBook Typ:
PDF
eBook Format:
eBook
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
Background.- Inequality constraints.- Fenchel duality.- Convex analysis.- Special cases.- Nonsmooth optimization.- The Karush-Kuhn-Tucker Theorem.- Fixed points.- Postscript: infinite versus finite dimensions.- List of results and notation.
Optimization is a rich and thriving mathematical discipline. The theory underlying current computational optimization techniques grows ever more sophisticated. The powerful and elegant language of convex analysis unifies much of this theory. The aim of this book is to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. It can serve as a teaching text, at roughly the level of first year graduate students. While the main body of the text is self-contained, each section concludes with an often extensive set of optional exercises. The new edition adds material on semismooth optimization, as well as several new proofs that will make this book even more self-contained.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.