Der Artikel ist weiterhin als ^^OTHERCONDITION^^ verfügbar.
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Water-Quality Engineering in Natural Systems

Fate and Transport Processes in the Water Environment
 E-Book
Sofort lieferbar | Lieferzeit:3-5 Tage I
ISBN-13:
9781118459379
Einband:
E-Book
Seiten:
472
Autor:
David A. Chin
eBook Typ:
Adobe Digital Editions
eBook Format:
E-Book
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

Provides the tools needed to control and remediate thequality of natural water systems
Now in its Second Edition, this acclaimed text sets forthcore concepts and principles that govern the fate and transport ofcontaminants in water, giving environmental and civil engineers andstudents a full set of tools to design systems that effectivelycontrol and remediate the quality of natural waters. Readers willfind coverage of all major classes of water bodies. Moreover, theauthor discusses the terrestrial fate and transport of contaminantsin watersheds, underscoring the link between terrestrial loadingsand water pollution.

Water-Quality Engineering in Natural Systems begins withan introduction exploring the sources of water pollution and thecontrol of water pollution. It then presents the fundamentals offate and transport, including the derivation and application of theadvection-diffusion equation. Next, the text covers issuesthat are unique to:
* Rivers and streams
* Groundwater
* Watersheds
* Lakes and reservoirs
* Wetlands
* Oceans and estuaries

The final two chapters are dedicated to analyzing water-qualitymeasurements and modeling water quality.

This Second Edition is thoroughly updated based on thelatest findings, practices, and standards. In particular, readerswill find new methods for calculating total maximum daily loads forriver contaminants, with specific examples detailing the fate andtransport of bacteria, a pressing problem throughout the world.

With end-of-chapter problems and plenty of worked examples,Water-Quality Engineering in Natural Systems enables readersto not only understand what happens to contaminants in water, butalso design systems to protect people from toxic pollutants.
1. Introduction 1

1.1 The Problem 1

1.2 Sources of Water Pollution 3

1.3 Control of Water Pollution 10

2. Water Quality 13

2.1 Introduction 13

2.2 Physical Measures 14

2.3 Chemical Measures 19

2.4 Biological Measures 40

Problems 52

3. Fundamentals of Fate and Transport 55

3.1 Introduction 55

3.2 The Advection-Diffusion Equation 57

3.3 Fundamental Solutions of the Advection-Diffusion Equation 70

3.4 Transport of Suspended Particles 123

3.5 Turbulent Diffusion 127

3.6 Dispersion 139

Problems 147

4. Rivers and Streams 159

4.1 Introduction 159

4.2 Transport Processes 162

4.3 Models of Spills 184

4.4 Models of Dissolved Oxygen 195

4.5 Models of Nutrients 238

4.6 Models of Pathogens 241

4.7 Contaminant Loads 244

4.8 Management and Restoration 267

Problems 274

5. Ground Water 289

5.1 Introduction 289

5.2 Contaminant Sources 290

5.3 Fate and Transport Models 300

5.4 Transport Processes 326

5.5 Fate Processes 313

5.6 Nonaqueous-Phase Liquids 345

5.7 Monitoring Wells 356

5.8 Remediation of Subsurface Contamination 364

Problems 399

6. Watersheds 413

6.1 Introduction 413

6.2 Urban Watersheds 415

6.3 Agricultural Watersheds 454

6.4 Airsheds 489

Problems 490

7. Lakes and Reservoirs 495

7.1 Introduction 495

7.2 Physical Processes 500

7.3 Eutrophication 507

7.4 Thermal Stratification 522

7.5 Water-Quality Models 534

7.6 Management and Restoration 561

Problems 576

8. Wetlands 585

8.1 Introduction 585

8.2 Natural Wetlands 585

8.3 Constructed Treatment Wetlands 599

Problems 626

9. Oceans and Estuaries 629

9.1 Introduction 629

9.2 Ocean-Outfall Discharges 730

9.3 Estuaries 672

Problems 691

10. Analysis of Water Quality Measurements 697

10.1 Introduction 697

10.2 Probability Distributions 698

10.3 Fundamental Probability Distributions 701

10.4 Derived Probability Distributions 710

10.5 Estimation of Population Distribution from Sample Data 715

10.6 Estimation of Parameters of Population Distribution 723

10.7 Probability Distributions of Sample Statistics 731

10.8 Confidence Intervals 737

10.9 Hypothesis Testing 741

10.10 Relationships between Variables 757

10.11 Functions of Random Variables 766

10.12 Kriging 773

Problems 788

11. Modeling of Water-Quality 799

11.1 Introduction 799

11.2 Code Selection 801

11.3 Calibration 802

11.4 Validation 833

11.5 Simulation 834

11.6 Uncertainty Analysis 834

A. Units and Conversion Factors 843

B. Fluid Properties 849

C. Statistical Tables 855

D. Special Functions 863
Inhaltsangabe

PREFACE xvii

1 INTRODUCTION 1

1.1 The Problem 1

1.2 Sources of Water Pollution 2

1.2.1 Point Sources 2

1.2.1.1 Domestic Wastewater Discharges 3

1.2.1.2 Combined Sewer Overfl ows 3

1.2.1.3 Stormwater Discharges 3

1.2.1.4 Industrial Discharges 3

1.2.1.5 Spills 4

1.2.2 Nonpoint Sources 4

1.2.2.1 Agricultural Runoff 4

1.2.2.2 Livestock 4

1.2.2.3 Urban Runoff 5

1.2.2.4 Landfi lls 5

1.2.2.5 Recreational Activities 5

1.3 Control of Water Pollution 5

2 WATER QUALITY 7

2.1 Introduction 7

2.2 Physical Measures 7

2.2.1 Flow Conditions 7

2.2.2 Substrate 8

2.2.3 In-Stream Habitat 9

2.2.4 Riparian Habitat 9

2.2.5 Thermal Pollution 10

2.3 Chemical Measures 10

2.3.1 Dissolved Oxygen 10

2.3.2 Biochemical Oxygen Demand 12

2.3.3 Suspended Solids 14

2.3.4 Nutrients 15

2.3.4.1 Nitrogen 15

2.3.4.2 Phosphorus 16

2.3.5 Metals 17

2.3.6 Synthetic Organic Chemicals 18

2.3.6.1 Pesticides 18

2.3.6.2 Volatile Organic Compounds 18

2.3.7 Radionuclides 18

2.3.8 pH 19

2.4 Biological Measures 19

2.4.1 Human Pathogenic Microorganisms 20

2.4.2 Indicator Organisms 23

2.4.3 Biological Integrity 24

Problems 25

3 FUNDAMENTALS OF FATE AND TRANSPORT 27

3.1 Introduction 27

3.2 The Advection–Diffusion Equation 27

3.2.1 Nondimensional Form 29

3.2.2 Transformation to the Diffusion Equation 31

3.2.2.1 Conservative Tracers 31

3.2.2.2 Nonconservative Tracers with First-Order Decay 32

3.2.3 Moment Property of the Diffusion Equation 32

3.3 Fundamental Solutions of the Advection–Diffusion Equation 33

3.3.1 Diffusion in One Dimension 34

3.3.1.1 Spatially and Temporally Distributed Sources 36

3.3.1.2 Impermeable Boundaries 39

3.3.1.3 Continuous Plane Source 42

3.3.2 Diffusion in Two Dimensions 46

3.3.2.1 Spatially and Temporally Distributed Sources 47

3.3.2.2 Continuous Line Source 48

3.3.2.3 Continuous Plane Sources 49

3.3.3 Diffusion in Three Dimensions 52

3.3.3.1 Spatially and Temporally Distributed Sources 53

3.3.3.2 Instantaneous Point Source in Shear Flow 53

3.3.3.3 Continuous Point Source with Constant Diffusion Coefficient 54

3.3.3.4 Continuous Point Source with Variable Diffusion Coefficient 58

3.3.3.5 Instantaneous Line Source 59

3.3.3.6 Instantaneous Volume Source 60

3.4 Transport of Suspended Particles 60

3.5 Turbulent Diffusion 62

3.5.1 Relationship of Turbulent Diffusion Coefficient to Velocity Field 63

3.5.2 Eulerian Approximation 65

3.6 Dispersion 68

Problems 72

4 RIVERS AND STREAMS 78

4.1 Introduction 78

4.2 Transport Processes 79

4.2.1 Initial Mixing 79

4.2.2 Longitudinal Dispersion 85

4.2.2.1 Field Measurement of KL 85

4.2.2.2 Empiri Applications of the Load Duration Curve 122

4.7.2 Long-Term Contaminant Loads 128

4.8 Management and Restoration 131

4.8.1 Nonstructural Techniques 131

4.8.2 Structural Techniques 132

Problems 134

5 GROUNDWATER 142

5.1 Introduction 142

5.2 Contaminant Sources 142

5.2.1 Septic Tanks 142

5.2.2 Leaking Underground Storage Tanks 143

5.2.3 Land Application of Wastewater 144

5.2.4 Irrigation Return Flow 145

5.2.5 Solid Waste Disposal Sites 146

5.2.6 Waste Disposal Injection Wells 146

5.2.7 Agricultural Operations 147

5.3 Fate and Transport Models 147

5.3.1 Instantaneous Point Source 149

5.3.2 Continuous Point Source 150

5.3.3 Continuous Plane Source 152

5.4 Transport Processes 154

5.5 Fate Processes 160

5.5.1 Sorption 160

5.5.2 First-Order Decay 165

5.5.3 Combined Sorption and Decay 167

5.5.4 Biocolloids 169

5.5.4.1 Conventional Colloid Filtration Theory 169

5.5.4.2 Modifi ed Colloid Filtration Theory 169

5.5.4.3 Accounting for Dieoff 169

5.6 Nonaqueous Phase Liquids 170

5.6.1 Residual Saturation 171

5.6.2 Raoult’s Law 172

5.6.2.1 Effects on Saturation Vapor Pressure 173

5.6.2.2 Effects on Saturation Concentration 173

5.6.2.3 Soil and Aquifer Samples 174

5.7 Monitoring Wells 175

5.8 Remediation of Subsurface Contamination 179

5.8.1 Remediation Goals 180

5.8.1.1 Vadose Zone 180

5.8.1.2 Saturated Zone 180

5.8.2 Remediation Strategies 181

5.8.2.1 Free Product Recovery 181

5.8.2.2 Excavation and Disposal 183

5.8.2.3 Soil Vapor Extraction 184

5.8.2.4 Bioventing 188

5.8.2.5 Air Sparging 188

5.8.2.6 Pump-and-Treat Systems 188

5.8.2.7 Bioremediation 194

5.8.2.8 In Situ Reaction Walls 195

5.8.2.9 In Situ Containment 195

5.8.2.10 Natural Attenuation 196

Problems 196

6 WATERSHEDS 203

6.1 Introduction 203

6.2 Urban Watersheds 203

6.2.1 Sources of Pollution 205

6.2.2 Fate and Transport Processes 208

6.2.2.1 Event Mean Concentration Model 208

6.2.2.2 Buildup–Wash-Off Models 213

6.2.3 Stormwater Control Measures 215

6.2.3.1 Source Control Measures 216

6.2.3.2 Hydrologic Modifi cations 216

6.2.3.3 Attenuation of Pollutants 219

6.2.3.4 Collection System Pollution Control 221

6.2.3.5 Detention–Retention Facilities 222

6.3 Agricultural Watersheds 224

6.3.1 Sources of Pollution 224

6.3.2 Fate and Transport Processes 226

6.3.2.1 Erosion 226

6.3.2.2 Soil Pollution 232

6.3.3 Best Management Practices 236

6.3.3.1 Cropping Practices 237

6.3.3.2 Integrated Pest Management 237

6.3.3.3 Nutrient Management 238

6.3.3.4 Terraces and Diversions 238

6.3.3.5 Critical Area Treatment 238

6.3.3.6 Sediment Basins and Detention–Retention Ponds 239

6.3.3.7 Animal Waste Storage and Treatment 239

6.3.3.8 Livestock Measures of Mixing Potential 259

7.4.4.1 Richardson Number 259

7.4.4.2 Densimetric Froude Number 260

7.4.5 Artificial Destratification 260

7.5 Water-Quality Models 261

7.5.1 Zero-Dimensional (Completely Mixed) Model 261

7.5.1.1 Conservation of Mass Model 262

7.5.1.2 Conservation of Energy Model 265

7.5.2 One-Dimensional (Vertical) Models 266

7.5.2.1 Conservation of Mass Model 266

7.5.2.2 Conservation of Energy Model 268

7.5.2.3 Estimation of the Vertical Diffusion Coefficient 269

7.5.3 Two-Dimensional Models 272

7.5.3.1 Nearshore Mixing Models 272

7.6 Management and Restoration 275

7.6.1 Control of Eutrophication 275

7.6.1.1 Control of Point Sources 275

7.6.1.2 Control of Nonpoint Sources 275

7.6.1.3 Chemical Treatments for Phosphorus 275

7.6.1.4 Limitation of Internal Loading 276

7.6.1.5 Limitation of Algal Development 276

7.6.2 Control of DO Levels 277

7.6.2.1 Artificial Circulation 277

7.6.2.2 Water Fountains 278

7.6.2.3 Hypolimnetic Aeration 278

7.6.2.4 Oxygen Injection 278

7.6.2.5 Pump-and-Baffl e Aeration System 278

7.6.2.6 Snow Removal to Increase Light Penetration 278

7.6.3 Control of Acidity 279

7.6.4 Control of Aquatic Plants 280

Problems 282

8 WETLANDS 286

8.1 Introduction 286

8.2 Natural Wetlands 286

8.2.1 Classifi cation 287

8.2.1.1 Marshes 287

8.2.1.2 Swamps 287

8.2.1.3 Bogs 288

8.2.1.4 Fens 289

8.2.2 Delineation of Wetlands 289

8.2.2.1 Vegetation 289

8.2.2.2 Soils 290

8.2.2.3 Hydrology 291

8.2.3 Water Budget 291

8.2.3.1 Net Surface Water Inflow 292

8.2.3.2 Net Groundwater Inflow 292

8.2.3.3 Evapotranspiration 292

8.3 Constructed Treatment Wetlands 292

8.3.1 Classification 293

8.3.1.1 Free Water Surface Wetlands 294

8.3.1.2 Horizontal Subsurface Flow Wetlands 294

8.3.1.3 Vertical Flow Wetlands 295

8.3.2 Design of FWS Wetla

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.